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Figure 1: A rendering of highly specular objects under point lighitng. A high-resolution normal map (20482) makes rendering impractical
with standard techniques: the highlights are missed by naive pixel sampling. Left inset: Our solution is based on the concept of a pixel
normal distribution function (P-NDF), which can be highly complex. Right inset: Our method is accurate even in a moving-light sequence.

Abstract

Complex specular surfaces under sharp point lighting show a fasci-
nating glinty appearance, but rendering it is an unsolved problem.
Using Monte Carlo pixel sampling for this purpose is impractical:
the energy is concentrated in tiny highlights that take up a minus-
cule fraction of the pixel. We instead compute an accurate solution
using a completely different deterministic approach. Our method
considers the true distribution of normals on a surface patch seen
through a single pixel, which can be highly complex. We show how
to evaluate this distribution efficiently, assuming a Gaussian pixel
footprint and Gaussian intrinsic roughness. We also take advantage
of hierarchical pruning of position-normal space to rapidly find tex-
els that might contribute to a given normal distribution evaluation.
Our results show complex, temporally varying glints from materi-
als such as bumpy plastics, brushed and scratched metals, metallic
paint and ocean waves.
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1 Introduction

Conventional BRDFs model complex microgeometry using a
smooth normal distribution function (NDF) of infinitely small mi-
crofacets. However, real surface features are certainly not infinitely
small. Bumps and flakes from anywhere between a few microns
(brushed metal) to about 0.1 mm (flakes in metallic paints) to cen-
timeters (ocean waves) can produce interesting glinty behavior that
is visible with the naked eye. These glints are very pronounced with
a light source that subtends a small solid angle, such as the sun and
small light fixtures. This is true for surfaces specifically designed
to glint, such as metallic paints with embedded flakes or decora-
tive brushed metals, but also for everyday objects such as plastics
or ceramics (see Figure 2, left). In fact, smooth surfaces that meet
the microfacet assumption are the exception rather than the norm.
Most shiny surfaces that one encounters in reality have this type of
glinty behavior, readily observed under sharp lighting.

Our goal is to simulate glinty appearance in still images and an-
imations (see Figure 1 and the supplemental video). Represent-
ing geometry at a resolution sufficient to reveal the features that
cause glints is not difficult: we use high-resolution normal maps. A
much harder challenge is rendering a complex specular surface un-
der sharp lighting. Standard uniform pixel sampling techniques for
direct illumination have extremely large variance, and using them
for this purpose is impractical. The reason is that most of the energy
is concentrated in tiny highlights that take up a minuscule fraction
of a pixel, and uniform pixel sampling is ineffective at hitting the
highlights (Figure 3). An alternative explanation is that the space of
valid camera-surface-light paths is complicated and cannot be eas-
ily sampled from the camera or from the light. In some sense, we
need to search the surface for normals aligned with the half vector,
and this cannot be done by brute-force sampling.

Normal map filtering techniques [Toksvig 2005; Han et al. 2007;
Olano and Baker 2010; Dupuy et al. 2013] also do not fully solve
the problem. These methods attempt to approximate the NDF at a
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Figure 2: (a-b) Two photographs of an injection molded plastic computer mouse illuminated by a small light source (∼ 3.5 × 10−5sr
solid angle) reveal its glinty appearance. These effects are impractical to simulate using uniform pixel sampling. (c-e) Real-world normal
distribution functions of a dark bumpy ceramic tile were measured by illuminating the surface with a small focused incoherent source
(∼6.2×10−5sr solid angle covering a surface patch of ∼0.52mm). The images in (d) and (e) were captured by a camera located opposite
a diffuse acrylic barrier from the source. They reveal a distinct non-Gaussian distribution of scattered light, corresponding to the P-NDF of
the surface patch, only slightly warped and blurred because of the optical limits of our setup.

given scale by broad lobes, but the true NDF is highly complex; it
cannot be approximated well using a single Gaussian lobe, or even a
small number of lobes (Figure 4). Although these approaches avoid
aliasing artifacts, they are not able to reproduce glinty appearance
under high-frequency lighting. We instead desire to compute the
true solution that Monte Carlo would eventually converge to, using
a completely different deterministic approach with minimal approx-
imations.1

We consider the actual, unsimplified NDF of a surface patchP seen
through a single pixel (an example is shown in Figure 1, left inset).
This P-NDF can be easily estimated by binning: repeatedly choose
a point on the patch, take its normal, perturbed by the intrinsic sur-
face roughness, and add it into a bin. The key problem is that for
direct illumination, we need to evaluate the P-NDF for a single
half-vector. Clearly, it would be extremely inefficient to use the
binning approach here, wasting all but a single bin. Indeed, this is
equivalent to what a standard renderer would do, trying to hit a tiny
light source by chance. Instead, we require evaluation of the density
of a single normal coming from anywhere on the patch. Moreover,
the P-NDF is different for every pixel, so computations cannot be
reused. In our method, the P-NDF is just a mathematical tool to
derive what the correct pixel brightness should be; it is never fully
constructed, and only evaluated for a single vector.

We introduce an algorithm for P-NDF evaluation in Section 4. The
key assumptions that make the evaluation possible are a Gaussian
pixel filter and a tiny amount of Gaussian roughness on the spec-
ular surface. These combine into a single 4-dimensional Gaus-
sian “query” that is analytically integrated across the normal map,
avoiding random sampling. A basic computational block of our so-
lution is an integral of a 2-dimensional Gaussian over a triangular
domain, described in Section 5. We hierarchically prune position-
normal space to quickly find texels that might contribute to a given
P-NDF evaluation (Section 6). Our results show complex, tem-
porally varying glints from bumpy plastics, brushed and scratched
metals, metallic paint and ocean waves; see Section 7 and Figure
10.

1Specifically, constant view and light direction over P , and the approxi-
mations made when solving the integral in Section 5.

2 Related work

Naive pixel sampling. The standard approach to compute direct
illumination on a bumpy specular surface is to trace a ray through
the pixel, evaluate the normal of the hit point, and shade the point
from a light source using the point’s finite roughness BRDF; this
fails at rendering glints (Figure 3). Multiple importance sampling
[Veach 1997] does not help, because it is the pixel integral that is
inefficiently sampled, rather than the BRDF/light combination. The
REYES approach of surface subdivision into micropolygons [Cook
et al. 1987] is equally inefficient, since it would require micropoly-
gons as small as the highlights. Though we use fine triangulations
of the normal map for smoothness, our method can handle high-
lights that are arbitrarily smaller than the triangles.

Normal map filtering techniques can deliver artifact-free render-
ings by approximating a pixel’s NDF by a single lobe [Toksvig
2005; Olano and Baker 2010; Dupuy et al. 2013] or a small number
of lobes [Han et al. 2007]. However, none of these methods can
correctly capture glinty appearance. The core of the problem is that
the true NDFs can be highly complex, and their sharp features di-
rectly translate into spatial and temporal glinting. Approximating
them by broad lobes is only applicable under low-frequency illu-
mination that would filter the complex features anyway. Figure 4
shows the effect of replacing the true NDF by a single Gaussian or
a mixture of Gaussians, thus losing the sharp features.

Single-point evaluation of caustics. Caustics are related to our
work, since glints can be interpreted as “directional caustics”. Most
methods sample paths (particles, photons) and accumulate them in
a data structure (kd-tree, hash grid, or bins). However, this is not
sufficient for our purposes; we require point evaluation, which is
much harder. Walter et al. [2009] compute volumetric caustics due
to the refraction of a point light into a scattering volume through
a bumpy interface. This is related to our approach: linear normal
interpolation over triangles is used, a discrete set of specular con-
nections is enumerated, the Jacobian determinant term determines
highlight intensity, and a hierarchy is used to speed up the enu-
meration. However, no intrinsic roughness is considered (resulting
in singularities), and the phenomenon rendered is quite different.
Mitchell and Hanrahan [1992] compute reflected caustics from an
implicit surface by enumerating the discrete set of valid light paths
through interval arithmetic. They used wavefront tracing as a way
to compute the contribution of a valid specular path; this is again



Our method (17 min, 2.2 min actual glints) Naive sampling (2 hours, 4,096 samples) Zoom-in of a single pixel

Figure 3: Naive pixel sampling fails at rendering complex specular surfaces under small lights. The reason is that the highlights are too
small to be efficiently hit by uniform pixel sampling, which is obvious from the zoomed pixel on the right. Multiple importance sampling
would not help, since it is the pixel integral that is inefficiently sampled, not the light/BRDF combination.

correct NDF isotropic Gaussian
(our approach) [Toksvig 2005]

anisotropic Gaussian mixture of 10 anisotropic
(LEAN, LEADR) [Han et al 2007]

Figure 4: Approximating the true NDF by a single Gaussian
(Toksvig, LEAN, LEADR) or a small number of Gaussians (Han
et al.) loses the sharp features that cause glinting.

equivalent to the Jacobian determinant term for a single reflection,
with the associated singularities.

Other work on specular paths. Jakob and Marschner [2012] is an
extension of Metropolis light transport, which allows mutation of
a specular path at a single diffuse vertex; however, in our case, no
diffuse vertex is available for mutations. In the perfectly specular
case, there is a discrete set (rather than a manifold) of valid paths, as
already noted above. Moon et al. published several approaches to
approximate higher-order specular bounces, e.g. [2007], but low-
order specular paths are still computed brute-force with a relatively
large light source.

symbol domain definition
D unit disk (proj. hemisphere)
⊥ invalid normal
s = (s, t) D unit disk parameters, defining

vectors (s, t,
√

1− s2 − t2)
u = (u, v) R2 texture space parameters
n(u) R2 → D normal map function
J(u) R2 → R2×2 Jacobian of n(u)
P pixel footprint
Gp(u) R2 → R pixel Gaussian
Gr(s) R2 → R intrinsic roughness Gaussian
Gc[P, s](x,y) R4 → R combined Gaussian query

for footprint P and normal s
D(s) D ∪⊥ → R normal distribution function

Table 1: Notation used in the paper.

Stochastic reflectance. [Jakob et al. 2014] is concurrent work that
also addresses the problem of glinty surfaces, using a stochastic ap-
proach. Rather than work from a normal map, that method models
the surface as a procedural random collection of specular flakes that
occur according to a particular normal distribution. The key to their
method is counting up the particles contributing to a particular il-
lumination calculation without actually generating them, providing
efficiency for large query areas where many particles contribute.
When used as a model for a bumpy smooth surface, the stochas-
tic approach is phenomenological: the random-flake approxima-
tion replaces the P-NDF. In contrast, our algorithm exactly deter-
mines how a given specular surface, defined by a particular normal
map, really looks under given sharp illumination. Moreover, nor-
mal maps can express surface features large enough to be visible in
the image, e.g. the scratched and brushed examples in this paper.

3 Preliminaries

Solving our problem requires thinking about a surface patchP seen
through a pixel all at once, rather than one point at a time. Just as
every surface point has a local BRDF, we can think of areas of the
surface havingP-BRDFs that describe how the total contribution to
the pixel depends on the illumination. Rendering detailed normal
maps requires an efficient way to evaluate the area-integrated P-
BRDF, rather than letting the pixel filter do it implicitly by point
sampling.



For a specular normal-mapped surface, this area-integrated BRDF
is primarily determined by the distribution of surface normals over
the relevant patch of surface: we need to be able to ask “how often”
a given normal vector occurs in the patch. We call this distribution
the P-NDF; it is just like the microfacet distribution in a standard
BRDF model, but it gives the normal distribution for a particular
area rather than a global average over the whole surface. A crucial
observation is that the P-NDF is not a simple, broad function. It
contains a surprising amount of structure (Figure 5) even when the
surface patch is far larger than the features in the normal map. It
also varies dramatically across the surface. Evaluating the P-NDF
efficiently while preserving this detailed spatio-angular structure is
the key to accurately capturing glinty appearance.

Let us define these terms more precisely. Table 1 lists the symbols
used throughout the paper.

Pixel footprint. We assume a Gaussian pixel reconstruction fil-
ter. This projects to an approximately Gaussian footprint P in the
uv-parameterization of the normal map, whose covariance matrix
is easily computed by propagating ray differentials to the surface
[Igehy 1999]. In practice, we actually subdivide pixels into 4 × 4
subpixels, and make the footprints smaller accordingly. This han-
dles edges better, but for simplicity we will talk about pixel rather
than subpixel footprints.

Projected hemisphere. We will use the unit disk D to express
hemispherical unit vectors. The point s = (s, t) ∈ D represents
the unit vector (s, t,

√
1− s2 − t2) on the hemisphere. Let us also

define the extended unit disk as the union of the unit disk and a
special symbol⊥, which allows for normal distributions that some-
times return invalid normals. This is less common than working
with hemispheres, but it will be useful shortly.

Normal maps can be given directly or as the derivative of a height-
field. We use the direct option, though all but one normal map
in our examples do come from a heightfield (the exception is the
metallic paint flakes). The normal map is then defined as a function
n : R2 → D from points u = (u, v) in texture space to normals
s = (s, t). The Jacobian of n(u), denoted J(u), plays an im-
portant role in determining highlight brightness, and points where
det J(u) = 0 cause problems unless we are careful.

Intrinsic roughness. We could treat the surface as perfectly spec-
ular; however, we found that it is useful to consider a small amount
of unresolved fine roughness. This matches the real world in that
perfect smoothness is unachievable and the limits of geometric op-
tics are reached at very high resolutions. It also prevents singular-
ities (infinitely bright highlights), which arise with perfectly spec-
ular surfaces when det J(u) = 0, and cleanly deals with normal
maps that contain piece-wise constant regions.

NDFs. We can now define a normal distribution function (NDF) as
a probability distribution on the extended unit disk, with the obvi-
ous measure. (The associated random event is simply a “choice of
normal”.) This definition slightly deviates from standard references
such as [Walter et al. 2007] and [Burley 2012], but it is fully com-
patible with them, and is actually more convenient. In hemispher-
ical terms, NDFs like Beckmann and GGX require an additional
cosine term to integrate to 1, and their associated sampling routines
also bake in a cosine (see eq. (4) and (28) in Walter et al. [2007]);
in our formulation, no cosines need to be worried about. Further-
more, we now have more freedom in what passes as an NDF: any
suitable plane function can be restricted to the unit disk and prop-
erly normalized. In particular, Gaussians are perfectly good NDFs,
and this includes anisotropic and non-centered ones. Finally, state-
ments such as “blur an NDF by a Gaussian” now have a very precise
meaning. Even though this is different from spherical convolutions
with vMF or Kent distributions, the difference is not critical to us:

Figure 5: The P-NDFs of a smooth specular heightfield with a
Gaussian power spectrum, with a pixel footprint covering about
15× 15, 30× 30, 90× 90 and 300× 300 texels respectively.

we simply use the convolutions to avoid singularities coming from
unrealistically perfect surfaces.

The P-NDF can now be defined as the probability distribution of
the random variable defined by sampling the footprintP , evaluating
the normal at the sampled location, and perturbing by the intrinsic
roughness kernel. The last step can sometimes result in a normal
outside of the unit disk; these events are collected by the probability
of ⊥, and are often near zero in practice. Figure 5 shows different
P-NDFs as the size of the pixel footprint increases. Note that quite
large footprint sizes are required for these NDFs to start to mimic
analytic normal distributions like Beckmann.

4 P-NDF evaluation in flatland and 3D

Our core challenge is to find an evaluation algorithm for the P-
NDFD(s) for a half-vector s, corresponding to a given footprint on
a given normal map and with a given intrinsic roughness; indeed,
with such an algorithm at hand, it is straightforward to plug the P-
NDF into a standard microfacet BRDF, which can be used for direct
illumination calculations:

fr(i,o) =
F (i.h)G(i.h)D(h)

4 (i.n) (o.n)
(1)

where h = (i+o)/‖i+o‖ is the half vector, n is the unmapped sur-
face normal, F is the Fresnel term, and G is a shadowing-masking
term (only needed to avoid infinities at grazing). In the following
sections, we will first make the P-NDF evaluation problem more
approachable by analyzing the situation in flatland, and then present
the full 3D solution, which naturally follows from the flatland case.

The flatland situation is simpler: there is only one texture param-
eter u. The normal map can be written as a function n(u) returning
normals in (−1, 1), which is analogous to the unit disk from the
3D case. The full normal vector is (n(u),

√
1− n(u)2). The pixel

footprint P will turn into a Gaussian reconstruction kernel Gp(u)
that integrates to 1. Let X be a random variable that is distributed
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Figure 6: Flatland illustration of P-NDF sampling and evaluation. (a) A normal map is a 1D curve n(u) of the texture coordinate u. (The
other component of the normal vector is

√
1− n(u)2). (b) The pixel of interest projects to a Gaussian footprint given by Gp(u). (c) The

P-NDF D(s) giving the probability density of a given normal (s,
√

1− s2), assuming an intrisic roughness kernel Gr(s) with σ = 0.01.
(d) P-NDF evaluation in flatland can be visualized as integration of the combined Gaussian query Gc[P, s] over the segmented graph of the
normal map. In areas where the Gaussian is effectively zero (outside of the ellipse) we can prune the segments using a hierarchy.

according toGp(u). The key question is, what is the distribution of
the random variable n(X) on (−1, 1)? This is not a simple multi-
plication or convolution of the normal map with Gp, but instead a
pdf of a dependent random variable. The situation is illustrated in
Figure 6.

We can write down the P-NDF as:

D(s) =

∫ ∞
−∞

Gp(u)δ(n(u)− s)du =
∑
i

Gp(ui)

|n′(ui)|
, (2)

where ui are the roots of the equation n(u) = s. The delta func-
tion restricts the integral to points where n(u) = s, and the second
equation intuitively accounts for the “speed” of crossing the root; it
only works if a finite set of roots exists. As we can see, the P-NDF
will have singularities at points where n′(u) = 0. These corre-
spond to inflection points of the original heightfield. This analysis
shows that the P-NDF can have infinite values. If we use a pin-
hole camera and a point light, this can cause infinitely bright pixels.
(Our distant light/camera approximation is not the culprit; infinities
could occur even if we did not make this approximation.) Further-
more, there could be constant regions in the normal map, so we get
n′(u) = 0 for whole intervals, and corresponding delta functions
in the P-NDF .

To avoid singularities and other problems inherent in perfect spec-
ular surfaces, we introduce a tiny amount of finite roughness to the
normal-mapped surface. Since the P-NDF is just a function on the
interval (−1, 1), we can convolve it with a Gaussian Gr(s) easily:

D(s) =

∫ 1

−1

Gr(s− s′)
∫ ∞
−∞

Gp(u)δ(n(u)− s′)duds′

=

∫ ∞
−∞

Gp(u)

∫ 1

−1

Gr(s− s′)δ(n(u)− s′)ds′du

=

∫ ∞
−∞

Gp(u)Gr(n(u)− s)du

=

∫ ∞
−∞

Gc[P, s](u, n(u))du. (3)

In the last step, we combined the two 1D Gaussians into a single
2D one:

Gc[P, s](x, y) = Gp(x)Gr(y − s). (4)

By changing the integration order and eliminating delta func-
tions, we have removed any notion of root finding or singularities
from the problem, leaving a single well-defined integral of a one-
dimensional real function. An elegant way to intuitively visualize

the result is that we would like to integrate the combined recon-
struction kernel Gc[P, s] along the graph of the normal function,
the plane curve (u, n(u)). Note, though, that the measure is the
standard line measure on the u axis, not arc length along the graph.
Figure 6 (d) illustrates this intuition, and immediately leads to an
accelerated query idea: we can use a hierarchy to prune all normal
map segments in areas where Gc[P, s] is effectively zero.

In flatland,Gc is a 2D Gaussian, so we can subdivide the graph into
many line segments, and integrate the combined kernel along the
line segments. This leads to integrals of 1-dimensional Gaussians
over the segments, which can be computed easily in terms of erf(·).
This shows the benefit of choosing Gaussian filters; other choices
such as splines would lead to integration problems without closed-
form solutions.

Also note that we made the graph piecewise-linear, instead of the
full integrand Gc(u, n(u)): the latter would be a bad choice, since
the Gaussian can be much narrower than the discretization step.
We would like to handle specular highlights arbitrarily smaller than
the finest discretization level, and this choice is key to achieving
that goal.

3D analysis. We can extend the above line of thinking to three
dimensions, with two-dimensional texture space parameterized by
u = (u, v), and a normal function n : R2 → D.

A 2D Gaussian reconstruction kernel Gp : R2 → R now models
the pixel footprint P . The random process of choosing a position
u by sampling Gp and taking its normal will have the following
probability distribution:

D(s) =

∫
R2

Gp(u)δ(n(u)− s)du =
∑
i

Gp(ui)

| det J(ui)|
. (5)

This is in direct analogy to the flatland derivation. While the
flatland case has singularities at the inflection points of the orig-
inal one-dimensional heightfield, here we have singularities at
det J(u) = 0, which is a set of curves in uv-space where the curva-
ture of the original heightfield flips between elliptic and hyperbolic.
These curves directly correspond to the “folds” we often see in P-
NDF visualizations. Again, piecewise constant normal maps (or
affine regions of the heightfield) make det J(u) = 0 over whole
regions, causing delta functions in D(s). In fact, we have tried to
implement eq. (5) using analytic root finding and found it imprac-
tical due to the singularities.

Therefore, as in flatland, we introduce intrinsic roughness. This
is accomplished by a 2-dimensional Gaussian kernel Gr(s), which
convolves theP-NDF . The derivation is identical to flatland except
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Figure 7: A patch of the normal map with 9 × 9 texels. The z-
component of the normal is visualized using iso-lines, to clearly
depict curvature discontinuities. Using 32 triangles per texel shows
better smoothness than 2, at no extra storage.

with bold letters:

D(s) =

∫
D
Gr(s− s′)

∫
R2

Gp(u)δ(n(u)− s′)duds′

=

∫
R2

Gc[P, s](u, n(u))du. (6)

where
Gc[P, s](x,y) = Gp(x)Gr(y − s) (7)

We can again visualize this intuitively as integration of the com-
bined 4D reconstruction kernelGc[P, s] along the graph of the nor-
mal function, (u, n(u)), which is a 2D surface in 4D space. This
is hard to plot; however, the intuition that the graph can be triangu-
lated and Gc reduces to 2D Gaussians over the triangles is correct.
The hierarchical pruning idea also carries over from flatland.

In summary, we have observed that theP-NDFD(s) is not trivially
evaluated at a single point (direction) s. However, under Gaussian
pixel and roughness kernels, we have cast this evaluation as an in-
tegration problem, which can be solved by discretizing the normal
map into small affine patches. (Note, though, that the specular high-
lights we handle can still be much smaller than the patches.) The
next section discusses the details of solving this integration prob-
lem.

5 Analytic integration

To numerically evaluate equation (6), we choose to discretize the
normal map n(u, v) into triangles, and linearly interpolate the nor-
mal across them. More precisely, we linearly interpolate the s and
t values; the third coordinate is implied.

The simplest solution is to split each normal map texel into two
triangles. This is sometimes sufficient, but we found that this dis-
cretization can produce triangular artifacts in the P-NDF, if the res-
olution of the normal map is too low compared to the features it
depicts. If this is an issue, we can up-sample the normal map, or
subdivide texels into 4 × 4 sub-texels using bicubic Catmull-Rom
interpolation. Any other subdivision could be used, but 4 × 4 nat-
urally matches the control polygon of the bicubic patch. Figure 7
shows the difference between the two options.

Integrating a 2D Gaussian over a triangle 4. Our goal is to
compute integrals of the form

I =

∫
4
Gc(u, n(u))du =

∫
4
G(u)du. (8)

Since we linearly interpolate the normals, n is an affine function on
4, which allows us to collapse the 4-dimensional combined Gaus-
sian Gc into some other 2D Gaussian G.

This problem has been studied, and an R package implements
one possible solution [PolyCub 2004]. There exist numeri-
cal algorithms for evaluating the cumulative distribution function
Φ(x, y, ρ) of a bivariate Gaussian with σx = σy = 1 and covari-
ance ρ [Genz 2004], which can be adapted to evaluate the desired
integral. The PolyCub package also takes a similar approach. We
have implemented this method and it works correctly, but appears
slower than our method. A related problem for spherical Gaussians
has been studied by Xu et al. [2014].

Below we describe the implementation that we found to perform
well in our case. 4 is a triangle from our triangulation; due to its
construction, we only have right triangles, with two sides aligned
to the axes. If 4 is the triangle given by (u0, v0), (u1, v0) and
(u0, v1), we obtain an integral

I =

∫ u1

u0

(∫ f(u)

v0

G(u, v)dv

)
du, (9)

where f(u) achieves a triangular integration domain:

f(u) =
(u1 − u)v1 + (u− u0)v0

u1 − u0
. (10)

So far, we have just explicitly stated the problem. Eliminating v by
carrying out the inner integration, and substituting x for the argu-
ment of the resulting erf function, this leads to integrals of the form

experf(a, b, x0, x1) =

∫ x1

x0

exp(−a(x− b)2)erf(x)dx (11)

for some constants a and b, and shifted bounds x0 and x1. In fact,
the same form will result if we center the triangle instead of the
Gaussian, or if we transform the problem so the Gaussian is unit,
or with any other similar approach. This integral does not have an
elementary solution, but we can approximate it as follows.

We choose to approximate the function erf(x) on the interval
[−3, 3] by a piece-wise quadratic function on six subintervals, and
as −1 and 1 for |x| ≥ 3. The problem thus separates into integrals
of the form

expquad(a, b, c0, c1, c2, x0, x1) =∫ x1

x0

exp(−a(x− b)2)(c0 + c1x+ c2x
2)dx, (12)

which can be solved analytically using a computer algebra system.
The result is long but not fundamentally difficult.

Figure 8 illustrates the result of our integration algorithm on a par-
ticular normal map patch.

Comparison against reference. The correctness of the derivation
can be easily checked against the binning method. That is, we
use 100 million samples of Gp, look-up the normal map, perturb
by Gr , and store the samples in bins. Figure 9 shows the result.
The time-sequence comparison in Figure 1 is also computed using
this method. Note the excellent match between the two images,
computed using completely different methods. A minor difference
comes from the fact that the binning inherently computes bin in-
tegrals instead of bin center values like our evaluation. The sup-
plementary data contains several different NDFs compared against
the reference, in floating point format. Note that we only provide



heightfield patch h(u) normal map n(u) 1/| det J(u)|

2 triangles / texel 32 triangles / texel 2 triangles / texel
α = 0.001 α = 0.001 α = 0.05

Figure 8: Top row: A heightfield h(u) with a Gaussian power
spectrum, its normal map n(u) and the 1/| det J(u)| term that
specifies the highlight brightness on a perfectly specular surface
(with singularities at points where the original heightfield flips cur-
vature). Bottom row: the P-NDF corresponding to the footprint,
computed using our approach. Left to right, with roughness 0.001
and two triangles per texel (showing some artifacts), with 32 trian-
gles per texel, and with roughness 0.05 and 2 triangles per texel (no
artifacts).

our evaluation binning
32 triangles/texel 100 million samples

Figure 9: Comparison of the P-NDF evaluated by our approach to
the reference P-NDF computed by binning, demonstrating the cor-
rectness of our derivations, for a single pixel of the cutlery model.
A minor difference comes from the “anti-aliasing” of the binning
method, which naturally computes bin integrals instead of bin cen-
ter values like our evaluation.

single-pixel rather than full-frame reference comparisons, since the
latter would be extremely slow to compute using the 100 million
samples (see Figure 3), and would arguably provide less insight
than NDF comparisons.

6 Implementation

Hierarchical pruning of texels. To increase performance, we limit
the Gaussians to be non-zero only within 5σ (a reasonable approx-
imation). Therefore, many texels can be pruned, because either Gp

or Gr are zero over the whole texel. We can trivially reject texels
that fall outside ofGp. ForGr we utilize a min-max hierarchy over
the normal map. More precisely, for each texel, we precompute the
minimum and maximum value of s(u, v) and t(u, v), and build a
quad-tree hierarchy over these bounds. For a given query of D(s),
we traverse the hierarchy, pruning whole groups of texels whereGr

is guaranteed to be beyond 5σ. The recursive traversal is similar to
many other bounding volume approaches.

Importance sampling. Sampling from a P-NDF is easy by defi-
nition, using the same technique as was used to create the binning
reference: simply take the normal of a random surface point seen
through the pixel, and perturb by the intrinsic roughness kernel.

Adding other light paths. In our implementation, we separate the
glint component of the image (i.e. direct illumination on normal-
mapped specular surfaces from point lights) from all other light
paths, which are computed using path tracing; any other standard
algorithm could be used as well. On the first bounce from the cam-
era, we use the full normal map for importance sampling. On fur-
ther bounces we use a global P-NDF approximation for both sam-
pling and evaluation, since an accurate P-NDF no longer makes
a difference here. We could also use a normal map mip-mapping
method in that case. A simple extension would be to smoothly tran-
sition to a normal map mip-mapping method in the distance, once
glinting becomes insignificant.

Alternatively, our algorithm can be treated as a new “black-box”
BRDF with an additional pixel footprint specification, while keep-
ing all other parts of a renderer unmodified. However, we prefer to
get separate timings, and we wanted to make sure the glint compo-
nent is completely deterministic, to avoid any confusion about how
much noise comes from the true glints vs. the algorithm. For this
reason, we also do not use area lights, depth of field, or motion blur
in our results, though they would be easy to add.

7 Results

Our implementation uses the Mitsuba framework [Jakob 2010], and
runs on a 6-core Intel i7-4770K desktop at 3.5 GHz, hyperthreaded
to 12 threads. Below we describe the scenes shown in Figure 10.
Please see their temporal versions in the attached video. Note how
the strong glinting is correct, given the normal map and the light-
ing; our method is entirely deterministic and does not produce any
Monte Carlo noise. Our timings (Table 2) refer to one frame (1280
× 720). Note how the overhead of our algorithm is smaller than the
standard rendering with other light paths. Also note that our perfor-
mance depends on the number of pixels with glinty materials, and
is independent of scene complexity.

Snail. This scene illustrates, on the snail’s shell, a smooth height-
field created by inverse FFT from an isotropic Gaussian spectrum
with randomized phase, converted to a normal map. The features
of the normal map are smaller than a pixel, and yet the result is far
from smooth, producing a fairly dramatic glint effect.

Metallic paint snail. Metallic paint, often used on cars, is specif-
ically designed to show glints. Composed of several layers, the
most important are the top clear-coat (which provides the smooth
specular highlight) and the colored absorptive layer with embedded
aluminum flakes [Rump et al. 2008]. We model the flakes using a
normal map that is constructed by clustering the pixels into Voronoi
cells, whose centers are chosen using Poisson disk sampling, and
assigning a fixed normal to each cell, drawn from the Beckmann
distribution. No normal interpolation is necessary (or desirable) in
this case: each texel has a constant normal. No subdivision beyond
2 triangles is required either. We also added a diffuse lobe to ap-
proximate multiple internal reflections between the flakes and the
clear-coat. The snail is about 10 cm long, making the flakes more
visible than on a car.

Blender. This scene shows an energy drink blender with a bumpy
plastic body and a brushed metal lid. Brushed metal is notoriously
difficult to render under sharp lighting; typical compromises in-



isotropic noise metallic flakes ellipsoid bumps

brushed metal with dents scratched metal with dents ocean waves

(snail) (metallic snail) (blender body)

(blender lid) (cutlery)

Figure 10: Still frames from our five scenes: snail (showing a simple isotropic noise normal map), metallic paint snail (modeling metallic
flakes embedded in paint), blender (showing brushed metal with dents and plastic with ellipsoid bumps), cutlery (scratched metal with dents)
and ocean (temporally varying waves caused by wind). We used simple sRGB in these images, but any tone-mapping could be applied. The
full animations are shown in the supplementary video. Normal map contrast was enhanced for visualization purposes.



Snail Metallic Blender Cutlery Ocean
Our 2.2 1.0 5.5 6.2 9.9
Global 15.6 19.5 19.0 8.7 -
Envmap - - 20.9 6.1 23.5
Total 17.8 20.5 45.4 21.0 33.4

Table 2: Timings of a typical frame in minutes on a 6-core hy-
perthreaded i7 machine. “Our” refers to the runtime of our direct
illumination algorithm, the rest is the cost of standard path tracing.
We split environment lighting into a separate component.

clude increasing groove size, light size and roughness to unrealistic
levels. None of this is necessary with our approach. We generated a
normal map using the inverse FFT approach but with an anisotropic
Gaussian power spectrum, and added noise to the normals to sim-
ulate tiny dents. For the blender body, we used an ellipsoid bump
heightfield, which produces glints of different appearance from the
snail.

Cutlery. This scene shows metallic cutlery with strong scratches
from heavy use. A configuration like this, under strong small LED
lighting fixtures, is often seen in restaurants. We generated the
scratches as randomly oriented, slightly blurred line-shaped valleys.
We then added dents through noise, like with brushed metal above.

Ocean waves. Finally, we show our method applied to the ocean,
with similar but larger features than previous examples. Here we
model the ocean as a single rectangle with a normal map gener-
ated using the inverse FFT method [Tessendorf 1999]. While good
anti-aliased ocean renderings have been possible using LEAN or
LEADR methods, we can produce very sharp and correct glints
even in the distance, where multiple waves project to a pixel.

8 Conclusion and future work

The fundamental relationships between high-resolution specular
surfaces, small light sources, complex normal distributions and
glints are an important material appearance phenomenon that re-
ceived minimal attention in previous research. We explained the
failure of traditional Monte Carlo approaches at reproducing this
effect, and introduced a new deterministic approach for computing
the underlying integrals. Our key idea is to shade a surface patch
seen through a pixel by evaluating the true normal distribution func-
tion of the patch for a single normal, which can be done under Gaus-
sian kernel assumptions. The problem leads to integrals of bivariate
Gaussians over triangles, which can be efficiently approximated.
We showed complex, temporally varying specular reflections from
materials such as bumpy plastics, brushed and scratched metals,
metallic paint and ocean waves.

In the future, it would be interesting to bring our approach closer to
interactivity with further approximations. An extension to displace-
ment maps would be possible. We could also explore related glinty
phenomena caused by refraction, seen e.g. in snow, hair, waterfalls,
fabrics or plant cellular structures.
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