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Images from animations rendered with our algorithm, with environment illumination and multiple-bounce indirect lighting
converted into 65,536 lights. By sparsely sampling the light-surface interactions and amortizing over time, we can render each
frame in a few seconds, using only 300-500 GPU shadow map evaluations per frame.

Abstract
Rendering animations of scenes with deformable objects, camera motion, and complex illumination, including
indirect lighting and arbitrary shading, is a long-standing challenge. Prior work has shown that complex lighting
can be accurately approximated by a large collection of point lights. In this formulation, rendering of animation
sequences becomes the problem of efficiently shading many surface samples from many lights across several
frames. This paper presents a tensor formulation of the animated many-light problem, where each element of the
tensor expresses the contribution of one light to one pixel in one frame. We sparsely sample rows and columns
of the tensor, and introduce a clustering algorithm to select a small number of representative lights to efficiently
approximate the animation. Our algorithm achieves efficiency by reusing representatives across frames, while
minimizing temporal flicker. We demonstrate our algorithm in a variety of scenes that include deformable objects,
complex illumination and arbitrary shading and show that a surprisingly small number of representative lights is
sufficient for high quality rendering. We believe out algorithm will find practical use in applications that require
fast previews of complex animation.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Rendering animations of deformable scenes with global illu-
mination, high-frequency environment maps, and arbitrary
shading is a long-standing challenge. Fast rendering algo-
rithms exist for these problems, but usually resort to sparse
sampling, or significantly restrict the problem being solved.
On the other hand, PRT-based methods need a large amount
of precomputation and memory, particularly for high fre-
quency illumination and non-diffuse materials. Even well

established off-line algorithms like irradiance caching and
photon mapping can exhibit temporal artifacts when not
specifically designed to be temporally stable. [HPB07] in-
troduced a matrix-based formulation for rendering scenes
with global illumination, many direct lights and environment
maps, by sparsely sampling the rows and columns of the ma-
trix to reconstruct images in a few seconds. However, us-
ing this approach across multiple frames leads to temporal
flickering while not taking advantage of temporal coherence.
Simple temporal filtering is not a viable solution because it
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does not maintain quality; it blurs high-frequency lighting
and features like indirect shadows.

In this paper we present a new, flexible approach to ren-
dering animations of these scenes. We introduce a tensor
formulation of the problem, defined over pixels, lights and
time. Indirect illumination, environment map lighting, and
direct lights are all converted to point lights in this frame-
work. Moreover, any geometry and materials can be used,
since the framework simply treats them as arbitrary values
in the input tensor. Our algorithm clusters the columns of
the tensor, where the information needed to choose a good
clustering is obtained by sampling slices of the tensor. We
also introduce pixel mappings that establish the relation of
pixels (and their associated 3D surface points) for pairs of
consecutive frames. In summary, our main contributions are:

• A flexible tensor formulation of the animation rendering
problem that can incorporate global illumination, environ-
ment lighting, complex geometry and arbitrary shading,
• a time-aware clustering technique that takes advantage of

temporal coherence and addresses temporal flicker,
• a pixel mapping algorithm that allows for reusing shading

over frames.

We believe our approach can be practically useful in cin-
ematic rendering applications, where an entire shot can be
previewed with high quality.

2. Previous work

The body of research in rendering global and environment
illumination is very large. We split the related approaches
into four broad categories: those that convert the global il-
lumination problem into many point lights, those that use a
ray-tracing approach combined with sparse caching, those
based on hierarchical finite elements, and finally those that
are based on precomputation of light transport.

Many-light approaches. Instant radiosity [Kel97] and its
variants approximate the global illumination problem by a
number of virtual point lights (VPLs) that are usually gen-
erated by particle tracing and rendered on the GPU with
visibility handled by shadow mapping. Most of these ap-
proaches are directed at interactive performance, with some
sacrifices in quality and generality – the main reason is that
at most a few dozen lights can be rendered at interactive
rates, while a highly accurate solution usually needs thou-
sands. Furthermore, the particles usually need to be retraced
in every frame, which can lead to some temporal flicker (us-
ing quasi-Monte Carlo sampling can reduce this problem).

[DS05] and [DS06] present a fast one-bounce indirect
illumination solution, and also a method to generate one-
bounce indirect lights on the GPU; however, shadows from
VPLs are ignored. [LSK∗07] is a promising technique for
one-bounce indirect illumination that manages a set of 256
VPLs as illumination changes, without retracing new par-
ticles. However, for interactive performance, it uses sparse

interleaved sampling of the image, and re-renders at most 10
shadow maps per frame, which is only correct for a static
scene. In contrast, our solution computes 300-500 shadow
maps per frame, providing an accurate approximation to a
reference solution with as many as 65,536 lights.

Lightcuts [WFA∗05] and multi-dimensional lightcuts
[WABG06] are high-quality many-light algorithms. The lat-
ter also handles motion blur and participating media, but
does not amortize over multiple frames. These CPU-based
methods use ray-tracing for visibility and take several min-
utes per frame, as opposed to several seconds in our case.

[HPB07] introduces an algorithm for single-frame ren-
dering that sparsely samples rows and columns of the light-
ing matrix to reconstruct the image. This work is the closest
to our research. But [HPB07] is a randomized algorithm that
produces different error in every run. It does not explicitly
handle temporal coherence, and using it directly to render
animations leads to visible flicker. In this paper we focus on
extending this method with two goals: first, decreasing the
temporal flicker, and second, gaining better performance by
amortizing shading over time.

Sparse sampling approaches. A well known technique
in this area is the Render Cache and variants [WDP99,
TPWG02, BWG03]. These methods generally have image
artifacts when the scene changes; these artifacts gradually
clear as new samples arrive. Temporally coherent extensions
to (ir)radiance caching have been explored in [SKDM05]
and more recently in [GBP07]. However, both of these ap-
proaches, despite using sparse sampling, take several min-
utes per frame on moderately complex scenes. Photon map-
ping [Jen01] has been extended to temporally coherent
rendering, for example in [MTAS01, DBMS02, HDMS03];
however, these have some image artifacts from directly vi-
sualizing the photon map (without final gather).

Hierarchical radiosity. A technique for interactive scene
editing with global illumination was presented in [DS97];
this work takes advantage of temporal coherence, but it
might not scale to high-complexity geometry and materials.
Recently, some promising approaches based on hierarchical
radiosity have been presented that avoid the computation of
visibility, notably [Bun05] and [DSDD07]. These methods
provide very fast solutions; however, their drawback is that
the antiradiance (i.e. light that has to be subtracted to cor-
rect for ignoring visibility) is a highly directional quantity,
so a large number of directional samples is needed for each
patch to maintain accuracy. This makes these methods hard
to scale beyond a few thousand patches without compromis-
ing accuracy of indirect and environment shadows.

Precomputed transfer. PRT-style techniques,
e.g. [SKS02, NRH04, HPB06], are based on extensive
precomputation to render static or dynamic scenes under
distant or indirect illumination. Some related meth-
ods [RWS∗06] deal specifically with soft shadows. These
techniques usually do not have temporal aliasing problems.
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However, they usually have to give up some flexibility in
order to be able to precompute the solution, e.g. dynamic
deformations or indirect illumination. Our goal is to support
animations with all of these effects without precomputation.

3. Overview

The many-light problem involves computing the contribu-
tion of n lights to m surface points. The value of each of
these contributions can be expressed as the product of a ma-
terial term, a light term and a visibility term, which is 1 when
the sample is visible from the light and 0 otherwise. This
problem is very important, not only for rendering with many
direct light sources, but also because conversion to many
lights can be used to handle environment and indirect illumi-
nation. This is achieved by approximating the environment
map by many directional lights, and the indirect illumination
by many “indirect lights” with cosine emission [Kel97].

However, it is a difficult problem for two reasons. First,
the visibility term is costly to compute. Second, a naive algo-
rithm that evaluates all interactions would take time O(mn).
Several approaches attempt to solve either of these two prob-
lems. [HPB07] attacks the first problem by using fast GPU
shadow-mapping to evaluate the visibility, and the second
one by sampling only a small subset of rows and columns
from the m×n matrix of light-surface interactions.

Some randomized algorithms (including [HPB07])
demonstrate temporal flicker when used directly for ani-
mations, because they make different approximations in
different frames. Apart from eliminating flicker, we would
like to take advantage of the temporal coherence present in
most animations to actually decrease the necessary number
of samples, which is the goal of this paper. Simple ideas
like applying a temporal filter do not work very well, in fact
making error even more perceptible by smoothing it out
over several frames. Therefore, we propose an algorithm
that is time-aware by design.

Proposed algorithm. We formalize the problem as a large
m× n× f tensor A (3D array) of surface-light interactions
over multiple frames. The columns of the tensor correspond
to images rendered with a single light in a single frame,
while the rows express the contribution of all lights to a sin-
gle pixel in a single frame. As observed by [HPB07], the
rows and columns can be computed very efficiently on the
GPU, using shadow-mapping as the visibility technique.

The key idea of our algorithm (see Figure 2) is to clus-
ter the columns of the tensor, pick a single representative in
each cluster, and approximate all other columns in the clus-
ter by reusing the information from the representative. To
find a good column clustering, we use the information from
the sampled rows. We introduce a clustering algorithm that
repeatedly splits clusters in lights or time, producing results
with very low temporal flicker using surprisingly low num-

bers of sampled rows and columns (300 or 500 per frame on
average, instead of the 1000 or more required in [HPB07]).

To take advantage of temporal coherence, we need to be
able to compute a representative column in some frame k0
and use it in some other frame, k1. There are two simple so-
lutions to this problem, none of which work very well. The
first one is to take a column rendered with a single light in
frame k0, and use this image as is in frame k1, at most scal-
ing the pixel intensities by a constant. Clearly, if the cam-
era or some objects move between the frames, this will lead
to ghosting artifacts. The other simple solution would be to
compute illumination only at mesh vertices, and linearly in-
terpolate it across polygons. This is suboptimal, since for
high-quality results with arbitrary shaders we would like to
compute illumination per pixel.

Therefore, we propose a pixel mapping technique that al-
lows for an image rendered in one frame to be reprojected
and used in another frame. For each pair of adjacent frames,
we compute a forward and backward mapping between the
view samples based on nearest neighbors. Note that this does
not mean we compute sparse keyframes and extrapolate to
in-between frames; the mappings are applied separately for
each cluster that spans multiple frames. This lets us reuse
shading between frames practically without noticeable re-
projection artifacts.

In summary, a high-level overview of our algorithm is:

• Compute pixel mappings between frames (CPU),
• sample r rows of A per frame (GPU),
• partition the reduced columns into c clusters (CPU),
• compute a single representative in each cluster (GPU),
• use the representative to approximate the missing columns

in the cluster, by appropriately scaling intensities and ap-
plying the pixel mappings (GPU).

4. Algorithm

We now formalize the problem we are solving and explain
our algorithm in detail.

4.1. Tensor Notation

For the purposes of this paper, we define a tensor T to be a
3-dimensional array of real or RGB values of size m×n× f .
An alternative way to view T is as a sequence of matrices
T1, ...,T f . Throughout this paper we use Matlab-style nota-
tion for tensors and matrices. We will refer to a single el-
ement of T by T(i, j,k). We can specify subtensors by us-
ing sets of indices instead of single indices, e.g. T(I, j,k) or
T(i,J,K). We use a colon to specify the set of all indices for
a particular dimension, like T(:, :,k) or T(i, j, :). Our matri-
ces and tensors are assumed to be in column-major format.

We define the columns of a tensor T to be the vectors
of type T(:, j,k), and the rows of T to be vectors of type
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Figure 1: A tensor is just a 3D array (a). Columns (b), rows (c), slices (d), slabs (e), frames (f).
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Figure 2: Our algorithm first computes r slices (r f rows) of the tensor (a). These are assembled into a reduced tensor (b),
whose columns are then clustered (c). The same clustering is then applied to the full tensor, where a representative column is
rendered in each cluster (d). The missing columns in each cluster are filled in by scaling and mapping the representative (e).

Symbol Description Type
m Number of pixels scalar
n Number of lights scalar
f Number of frames scalar
r Number of slices (rows) scalar
c Number of clusters (columns) scalar
A Full lighting tensor m×n× f RGBs
R Reduced tensor r×n× f scalars
S Sparse scaling tensor c×n× f RGBs
Rec Reconstruction matrix c× f RGBs
Ct A cluster of light-frame pairs set of pairs
xp Normalized column of R r×1 scalars
wp Norm of a column of R scalar

Table 1: Summary of the notation used in the paper.

T(i, :,k). In other words, these are the rows and columns of
the matrices Tk. We also define slices of T to be the matri-
ces of type T(i, :, :), and slabs to be of type T(:, j, :). We will
use the Matlab function permute(T,d1,d2,d3), which is a
generalized transpose operator; it permutes the dimensions
of the tensor into the order specified by d1,d2,d3. We will
also use the function reshape(T,dims), which changes the
dimensions of the tensor while keeping the same data, and
the function sum(T,d) which sums the tensor across dimen-
sion d, producing a matrix.

4.2. A Tensor Formulation of the Problem

We are looking for an efficient algorithm to shade m image
pixels from n lights over f frames. We can view the problem
as a 3-dimensional tensor A of size m× n× f , where the
value of an element A(i, j,k) is the contribution of light j to
pixel i in frame k.

To compute the animation, we would like to accumulate,
for each frame, the contribution of all lights to each pixel.
This can be expressed as the sum of the tensor A along the
light dimension (the second dimension):

SA = sum(A,2)

A brute-force approach to compute SA would simply evalu-
ate all the elements of the tensor, taking time O(mn f ). For
typical high-quality rendering values of m and n in the thou-
sands to millions, and hundreds of frames, this is unaccept-
ably slow. We need an efficient way to reconstruct an ap-
proximate result by using only a small subset of the tensor
elements.

As noted by [HPB07], the sampling pattern can make a
significant difference: while a random pattern requires a ray-
tracer, full rows and columns of a lighting matrix can be ef-
ficiently computed on the GPU using shadow mapping. This
observation is still valid in the tensor setting.
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4.3. Clustering

The high-level idea is to partition the columns A(:, j,k) into
c clusters, compute a single representative column in each
cluster, and approximate all other columns in the cluster by
using information from the single sampled column. Note that
the algorithm does not simply cluster lights or frames, but in-
stead the light-frame pairs (LFPs) ( j,k). (We will also refer
to LFPs by a single index, going through all pairs.)

The quality of the result strongly depends on the chosen
column clustering, which we optimize by using the informa-
tion from the sampled slices. We define the reduced tensor
R to be the tensor of the sampled slices stacked on top of
each other. The size of R is r×n× f . In Matlab notation, if
I is the set of indices of the selected rows, we can write:

R = A(I, :, :)

In essence, R is equivalent to the complete tensor A, except
for a smaller image size. The idea is to optimize the cluster-
ing on R since this is numerically feasible, and then use the
resulting cluster assignment for A. The assumption is that
most of the significant structure of A is preserved in R.

4.3.1. Clustering objective function

We call the columns of the reduced tensor R(:, j,k) the re-
duced columns. We use the clustering objective proposed
by [HPB07] for single-frame rendering with many lights,
where it was chosen to minimize the expected error of the
algorithm. The key modification we introduce in this paper
is that the objective function operates on light-frame pairs
instead of just lights. Let p = ( j,k) and q = ( j′,k′) denote
indices of LFPs. We define the cost of a clustering as the sum
of the costs of all clusters Ct :

c

∑
t=1

cost(Ct) =
c

∑
t=1

∑
p,q∈Ct

d(p,q)

Here we define the “distance” between two light-frame pairs
p and q as

d(p,q) = wpwq‖xp−xq‖2

where wp = ‖R(:, j,k)‖ is the norm of the reduced column
corresponding to the light-frame pair p,

xp = R(:, j,k)/‖R(:, j,k)‖

is the normalized reduced column, and analogously for wq
and xq. We can think of wp as the weight of the light-frame
pair p, since it approximates the energy that it contributes
to the animation. We call xp the information vector of light-
frame pair p, since it abstracts away from the energy and
expresses the “kind” of the light’s contribution to the frame.

Intuitively, this clustering objective has very desirable
properties: it tends to separate light-frame pairs with large
weights or with different information vectors. An interesting
property of the objective is that, in some sense, it treats time

a) b)

d)

c)

Figure 3: The key operation of our clustering. Given a cur-
rent clustering (a), we find the cluster with the highest cost
(b). We consider splitting it in time (c) or lights (d), and pick
the split that results in the lowest-cost clustering.

and lights equivalently, even though they model very differ-
ent physical phenomena. This is because the fundamental
approximation in our approach is the replacement of some
column by a (possibly rescaled) copy of a representative col-
umn. This contributes some error (in the squared 2-norm
sense) to the total error of the animation. If we ignore the
(hard to quantify but usually negligible) error introduced by
pixel mappings, then this contribution is the same, regard-
less of whether the representative is in the same frame as the
column being approximated, or in a different frame.

4.3.2. Finding the Clustering

The above discussion leaves two issues unaddressed. First,
the above clustering problem is NP-hard even if all weights
are 1 [dlVKKR02], so we can only hope for an efficient
heuristic to find a reasonably good clustering. Second, the
objective function has no explicit constraint enforcing tem-
poral smoothness; therefore even the optimal clustering
might not be perceptually pleasing, even though its numer-
ical error might be low. In fact, we also tried running the
original clustering from [HPB07] on the columns of the ma-
trix

reshape(R,r,n f )

which essentially treats the light-frame pairs as completely
disconnected lights, without any knowledge about time. We
found that the result, while converging to the correct answer,
still flickered too much to be usable.

The key idea of our clustering algorithm that solves these
issues is to consider only the subset of possible clusterings
where all clusters are “rectangular”, i.e. the set of LFPs in
each cluster is always a Cartesian product of a set of lights
and a set of frames. We can visualize the clustering as an n×
f array that specifies for each light-frame pair the cluster it
belongs to. Figure 3 shows example clusterings, visualizing
cluster memberships as colors.

Top-down splitting approach. This is the key compo-
nent of our technique. The idea is to find the cluster with the
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highest cost, and split it in lights or in time; repeat this step
until the desired number of clusters is reached. The ques-
tion of whether to split in lights or time is resolved by trying
both alternatives and choosing the one with the lower cost of
the resulting clustering. (One could also consider weighting
light splits differently from time splits, to force more subdi-
vision in lights than in time or vice versa.)

Time split. When splitting in time, the situation is easier
since there is already a natural ordering on the frames – their
actual order in the animation. Therefore, we consider split-
ting the cluster at all positions and choose the one with the
best objective function value.

Light split. There exists no natural ordering of lights, so
the above idea does not apply to light splitting trivially. We
instead find an ordering of lights by projecting them onto a
line in r f -dimensional space as follows. Let C be the cluster
we are splitting; let C = J×K where J is a set of light indices
and K is a set of frame indices. Let

Y = X(:,J,K)

be the r×|J|× |K| sub-tensor of X corresponding to C. The
slabs Y(:, j, :) combine all information vectors of light j over
the set of frames K. We reshape these slabs into vectors and
project them onto a line. The orientation of the line is deter-
mined by picking two lights in the cluster with probability
proportional to their total weights over frames in K, and tak-
ing the line they lie on (in r f -dimensional space). The or-
dering on the line will be used to find the split as in the time
case. Essentially, we’re slicing the cluster by a hyperplane in
“information space”. The advantage of using this approach
is that it is invariant with respect to the initial ordering of the
lights; moreover, with a high probability, two elements with
large weights will be separated by the split.

Clustering initialization. Here we initialize the cluster-
ing to a small number of clusters (e.g. 100), by partitioning
only in lights (i.e., each cluster will be a Cartesian product of
all frames with a set of lights). The algorithm we use is the
multi-set sampling algorithm described in [HPB07], applied
to the matrix R′ defined as:

R′ = reshape(permute(R,1,3,2),r f ,n)

Intuitively, we take the slabs R(:, j, :) for each light j, un-
fold them into vectors that form the columns of R′, and then
run the sampling algorithm on these vectors. As a further
optimization, we use random projection to decrease the di-
mensionality of the clustering problem. This approximation
is acceptable, since the goal of the initialization phase is just
to provide a reasonable starting point for the splitting phase;
it does not have to be very optimal itself.

After the initialization phase, the algorithm splits either
on time or lights as described above. In fact, we could skip
the initialization phase, and only run the splitting phase. This
has two disadvantages: first, it is slower, since splitting large
clusters takes longer; second, the algorithm might decide to

split in time too early, which could result in a visible tempo-
ral cut (even though it might be the more optimal move in
terms of objective function minimization).

4.4. Pixel Mappings

We compute, for each frame, a pixel mapping to its prede-
cessor and successor frames. The forward mapping M(k→
k + 1) specifies for each pixel in frame k + 1 its nearest
neighbor among pixels in frame k. The definition of the
backward mapping M(k +1→ k) is analogous. These map-
pings can be interpreted as sparse matrices of size m×m.
For example, if x is an m× 1 vector storing an image ren-
dered with a single light in frame k, then M(k→ k + 1)x is
an approximate image with the same light in frame k + 1.
This simple improvement leads to very good results, and the
artifacts due to the mappings are almost invisible in the final
animations. More details of how we compute the mappings
can be found in Section 5.

4.5. Final Reconstruction

Given a clustering of light-frame pairs, we choose a repre-
sentative LFP p = ( j,k) in each cluster; we choose the one
with the largest wp. (In [HPB07] the representative was cho-
sen randomly, with probability proportional to reduced col-
umn norm. This had the effect of making the algorithm unbi-
ased in Monte Carlo sense. In the temporal setting, the algo-
rithm can no longer be made unbiased, so we use a determin-
istic choice.) Then we render the corresponding column A(:
, j,k) on the GPU and approximate all other columns in the
cluster by scaled, mapped copies of the computed represen-
tative. Let the index of the column we are approximating be
q = ( j′,k′); then the representative will be scaled by wq/wp,
and mapped by the repeated application of the precomputed
pixel mappings to get from frame k to k′, i.e. by applying the
product of sparse matrices M(k′−1→ k′) . . .M(k→ k +1)
(here assuming k < k′).

Of course, we do not in reality reconstruct the full tensor
A, since we are only interested in its sum across lights. We
bypass the creation of the full tensor by defining a scaling
tensor S of size c× n× f , such that the value S(i, j,k) is
the scaling of the representative of cluster i, when it is used
to approximate the column for LFP ( j,k). Clearly, S is very
sparse, since every representative will only be used to ap-
proximate LFPs in its own cluster. Therefore, we can easily
construct it in a compact representation. From the scaling
tensor we get a reconstruction matrix Rec = sum(S,2) of
size c× f , which specifies for each representative the scal-
ing factor that it contributes to each frame.

5. Implementation Details

Creating the lights. In scenes lit by an environment map,
we convert the map into directional lights by simple uniform
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stratified sampling. We could certainly use a more advanced
importance sampling approach, but the point is that our algo-
rithm will automatically find the important lights and cluster
them less aggresively than weak lights. For indirect illumi-
nation, we cover the surfaces of the scene uniformly with
gather samples as in [HPB06]. These samples are firmly tied
to their respective triangles, so they move as their underly-
ing geometry moves and deforms. Again, some importance
sampling technique could be substituted, but our algorithm
essentially provides the light selection automatically. For the
sun-sky model, we turn the sun (a small strong area light)
into 16 directional lights, and sample the sky uniformly.

Shading the gather samples. To turn the gather samples
into indirect lights, we need to determine the illumination on
them. We shade the gather samples with direct illumination
from point lights. To add multiple bounces of indirect illumi-
nation, we use a photon-mapping pre-pass. We shoot 10,000
photons into the scene without storing the first hit into the
photon map. These photons do not directly become indirect
lights; instead, we perform density estimation on the gather
samples that are tied to the surfaces.

This approach also works for multiple bounces from the
sky (used in the temple), and could be also used for area
lights or other kinds of lights for which direct illumination
computation is non-trivial; the only difference being that the
first hit photons would also be stored in the photon map.
Note that this photon mapping approach requires implement-
ing a ray-tracer matching the GPU renderer. Photon map-
ping is a standard approach to add multiple bounces to final-
gather algorithms [Jen01, HPB06].

Clustering and cost computation. Computing the cost
of a cluster might seem to be quadratic in the number of its
elements; however, it can be easily optimized by noting that

d(p,q) = wpwq‖xp−xq‖2 = wp(xT
p xp +xT

q xq−2xT
p xq)wq

so the matrix of distances between every pair of elements in
the cluster is low-rank and can be manipulated in a com-
pact form. The clustering problem is quite large-scale; in
our case, the reduced tensor has 100×65536×40 elements,
which amounts to 1GB of data in 32-bit precision. Our im-
plementation does all operations on the tensor in-place, to
not waste memory. Note that the original RGB data is con-
verted to scalars by taking 2-norms of the RGB triples; how-
ever, the per-channel norms of the columns need to be pre-
served, since they are needed for the reconstruction.

Pixel mapping computation. To compute the mappings,
we render the “deep frame-buffers”, i.e. world-space posi-
tions, normals, and diffuse reflectances for all pixels in each
frame. We treat each sample as a 9-vector, and use a kd-tree
for nearest neighbor queries. The mappings are stored as tex-
tures of indices on the GPU.

Row computation. We pick the rows by splitting the im-
age into 10× 10 bins and picking a pixel in the center of

each bin. The surface samples for those pixels are in the deep
frame-buffer. A row is computed on the GPU by rendering a
cube shadow map at the surface sample position, and evalu-
ating the shader for that sample and all lights.

Column computation and reconstruction. Column
computation is a standard direct illumination evaluation for
a single point light on the GPU, using a single shadow map
for spotlights and directional lights, and a cube shadow map
for indirect and omni-directional lights. Once a representa-
tive column is computed, the mappings are applied on the
GPU, so that slow readbacks can be avoided until the whole
sequence is rendered.

Anti-aliasing. Even though all our shading is computed
with one sample per pixel, we apply an edge-respecting
anti-aliasing post-process to our images that uses an idea
similar to one presented in [HPB06]. A deep frame-buffer
(DFB) of positions, normals and diffuse albedos (a total of
9 values per pixel) is rendered at 3x the standard resolu-
tion, and the shading is “upsampled” to this higher resolu-
tion. This is done by finding, for each 9-dimensional sam-
ple in the high-resolution DFB, the nearest neighbor among
the 9-dimensional samples in the low-resolution DFB, and
copying the image color from that pixel. The nearest neigh-
bor search is done only in 3x3 neighborhoods of the low-res
DFB, instead of full search using an acceleration structure.
This idea is orthogonal to our main algorithm, and could be
used with any approach where shading is sufficiently expen-
sive to amortize the cost of the anti-aliasing pass.

6. Results and Discussion

Figure 4 shows images from five animation sequences, each
of which is 10 seconds long at 20 frames per second (200
frames total). We refer the reader to the video for the fi-
nal rendered animations. We also provide a video with a
side-by-side comparison of our algorithm to the brute-force
method (which renders all 64k lights exhaustively). For the
more complex scenes, where rendering the brute-force solu-
tion is prohibitively expensive, we only show a few frames
instead of the full 20 frames per second. Timings of the dif-
ferent components of our system for all rendered sequences
are summarized in Table 2 and were measured on a desktop
with a Core 2 Duo 2.6 GHz processor, 2GB of RAM and an
Nvidia 8800 GTX GPU.

We apply the algorithm to five 40-frame chunks of the an-
imation separately, and stitch together the results; this is to
limit the memory needed to hold the reduced tensor. We have
not found objectionable artifacts at the boundaries of the
chunks, but we could also consider overlapping the chunks
over several frames and linearly blending them.

One main strength of our algorithm is its generality with
respect to types of lights, materials and geometry supported.
Moreover, all scene elements can be dynamically deforming.
The included rendered sequences show camera motion, rigid
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Iris Still Bunny Temple Horses
#triangles 51k 107k 869k 2.1m 8.2m
rows/frame 100 100 100 100 100
columns/frame 200 400 200 200 200
shadowmaps/frame 300 500 300 300 300
indirect lights - 7.53 - 7.31 -
mappings 2.88 1.94 1.18 2.66 3.65
exploration 0.98 0.79 1.02 4.95 15.58
clustering 0.99 1.41 1.19 0.78 1.00
reconstruction 0.55 4.17 1.39 7.60 26.69
anti-alias 1.50 1.25 1.25 2.59 2.23
total 6.90 17.09 6.03 26.40 49.15
brute-force 126 301 395 2013 13221
speed-up 18x 18x 65x 76x 269x

Table 2: All timings are per-frame averages in seconds.
Columns/frame is the average number of representatives
computed per frame. The stages of the algorithm are, re-
spectively: indirect light creation and shading (only done for
scenes with indirect illumination), pixel mapping computa-
tion, GPU row rendering (exploration), clustering, represen-
tative rendering on the GPU, and final anti-aliasing pass.
The brute-force renders all 65,536 lights on the GPU using
shadow mapping for visibility.

and deformable geometry, arbitrary shaders, indirect illumi-
nation, HDR environment lighting, and a sun-sky model.

Iris. This is a relatively simple scene with 51k polygons;
however, it shows that our algorithm can correctly deal with
deforming geometry. It also clusters the more pronounced
lights less aggressively than weak ones, resulting in nicely
preserved high-frequency shadows. Textures are correctly
handled by the pixel mapping algorithm. While similar re-
sults could be rendered by importance-sampling the map
with a technique such as [ODJ04], our approach is much
more general in that it works with an abstract tensor, not
specific to environment map sampling.

Still life. This indoor scene shows multiple bounces of
indirect illumination. We distribute 65,536 gather samples
over all surfaces of the scene, determine their shading by a
combination of direct lighting and photon density estima-
tion, and treat them as 65,536 cosine-emission lights illumi-
nating the scene. Even though our algorithm knows nothing
about indirect illumination, i.e. it is just sampling elements
of an abstract tensor, we obtain a high quality solution. Note
that the highly glossy bunny close to indirect lights is a par-
ticularly hard case, and some flicker can still be seen. How-
ever, this case would also be tricky for any other approach
except for pure Monte Carlo ray-tracing.

Furry bunny. The bunny scene contains high-complexity
fur geometry (50,000 hairs, 869k polygons). The detailed ge-
ometry and shadows would be tricky to handle by a sparse
sampling technique such as (ir)radiance caching. The fur
uses the Kajiya-Kay hair shader, further demonstrating the

Figure 4: A few frames from our result animations – Iris,
Still life, Furry bunny, Temple, and Horses.

ability of our approach to handle arbitrary materials and pro-
cedural shaders. Some flicker on the bunny can be seen; this
is due to geometric aliasing on the thin hairs, not due to light-
ing.

Temple. This scene with over 2 million polygons shows
the scalability of our technique to complex geometry. It also
shows a combination of high and low frequency distant il-
lumination (sun and sky), together with multiple bounces
of indirect illumination. Note that while the scene is static,
we still compute and apply the pixel mappings (even though
they will be an identity mapping), since we do not treat this
situation as a special case in our framework.

Horses. This scene contains 500 horses, for a total of over
8 million polygons. It demonstrates that our improvement
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in comparison to brute-force rendering improves with more
complex scenes, since the overhead of our technique (clus-
tering and mappings) is independent of polygon count.

Discussion and Limitations. A valid question is why
does this approach perform better on animations than
[HPB07]. First, some coherence of the clustering across
frames is achieved because of its “rectangular” nature. Sec-
ond, since clusters can span several frames, the effective
number of clusters that contribute to a frame is higher than
the average number of representatives rendered per frame.
For example, we use 200 average representatives per frame
(400 in the still life scene); however, the effective number of
clusters is about 230-400 in the iris scene, 1500-7000 in the
still scene, and 7000-7300 in the temple. One can note that
in scenes with less temporal change of geometry, the algo-
rithm creates “longer” clusters in time, which translate to a
larger number of effective clusters per frame.

Some of our animations still show some flicker; however,
increasing the number of clusters should decrease this prob-
lem. A higher number of clusters slows down only the re-
costruction phase and (very slightly) the clustering phase;
performance remains identical for other phases.

The well-known limitations of shadow mapping and
instant-radiosity type approaches are also present in our al-
gorithm – shadow bias is required to reduce self-shadowing,
indirect light clamping is needed to avoid the explosion of
the 1/r2 term for indirect lights near surfaces, and not all
light paths can be handled (e.g., caustics). We also currently
have no automatic way of selecting parameters like the num-
ber of rows and columns to sample.

7. Conclusion

We have introduced a tensor formulation for rendering ani-
mations with complex geometry and lighting (including in-
direct illumination and environment maps), deformable ob-
jects and arbitrary materials and shaders. From this formula-
tion, we have derived an efficient algorithm that takes advan-
tage of temporal coherence to compute high-quality images
with low temporal flicker in several seconds on the GPU.

Our contributions, other than the tensor formulation itself,
are two-fold: the ability to amortize shading across anima-
tions, and a solution to the problem of temporal flicker. No-
tably, we only compute a few hundred (300-500) shadow
maps per frame to achieve these goals, whereas the brute-
force method would compute shadow maps for all lights
(tens of thousands per frame).

We believe this approach can be very useful in applica-
tions like previewing in cinematic rendering, where an entire
shot can be viewed with very high quality. In future work, we
would like to explore combination of our sampling frame-
work with motion blur, depth of field and volumetric effects
in arbitrary animated scenes.
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