
Real-time Hardware-accelerated Relighting with
Approximate Indirect Illumination

Milos Hasan Fabio Pellacini Kavita Bala

July 9, 2005

a) Point light b) Spot light c) Projector

Figure 1: A scene rendered interactively with one light of different types, showing both direct
and indirect illumination.

Abstract

Deep framebuffer relighting engines are often used to speed up lighting design in geometrically-
complex procedurally-shaded environments where they provide interactive feedback on changes
to the direct illumination. This paper presents an extension to these algorithms by providing
real-time feedback for one-bounce indirect illumination. This is achieved by relighting a set of
cached gather samples generated from the original geometry using a Monte Carlo gathering
approach. To improve performance and decrease storage, the gather samples are clustered
such that the resulting data structures are efficient for evaluation on modern GPUs. The
hardware-accelerated implementation of our algorithm achieves real-time performance and
is scalable to environments with high geometric and material complexity while supporting
arbitrary direct lighting models, including local ones, and diffuse and glossy materials.

1

1 Introduction

Lighting design is a fundamental aspect of synthetic image generation, where artists carefully
set the parameters of each light to obtain a desired look. This process is often limited by
the time required to render images after each change of the lights. This is particularly true
for high-quality imagery generated by rendering geometrically-complex environments where
real-time rendering cannot be achieved.

To alleviate this problem, various relighting engines have being introduced in the litera-
ture [SS89] [BP96] [GH00] and implemented in commercial systems. These algorithms trade-
off higher latency of camera movement for increased throughput in image refresh. When
lighting models are based on direct illumination, this is achieved by caching geometric and
material information for the current view in a deep framebuffer data structure [ST90] and
reevaluating the lighting computations upon changes to illumination parameters. These al-
gorithms not only allow for fast user feedback, but can be easily adopted by artists since
they support arbitrary direct lighting models, often specified using shaders, as well as scenes
of high geometric complexity.

The main drawback of these previous approaches is their inability to cope with indirect il-
lumination that is becoming increasingly important for lighting design in various applications
of computer graphics, even in the case of high-complexity environments [TL04]. Our goal
is to extend fixed-view deep framebuffer-based relighting algorithms to approximate indirect
illumination simulations suitable for lighting design. In particular our approach provides
a real-time algorithm for one-bounce indirect illumination computed from procedurally-lit
high-complexity environments; this is a particularly important application since procedural
direct lighting models are the most often used models in lighting design and since a one
bounce solution was proven to be efficient and controllable in the context of complex anima-
tions [TL04]. In addition our algorithm supports diffuse and glossy materials lit with various
types of lights, such as local point and spot lights, as well as more complex local lighting
models that could be authored using shaders, thus making our approach suitable for lighting
design in artistic settings.

In order to achieve our goal, we propose to augment the data stored in each pixel, called
view sample, of a deep framebuffer with an additional set of samples, called gather samples,
generated by sampling the hemisphere of the corresponding view sample using a Monte Carlo
approach. The gather samples contain position, normal and material properties of points of
the scene seen by the hemisphere of each visible position. After each light movement, the di-
rect illumination of the gather samples is evaluated and accumulated to estimate the indirect
illumination of each view point. Unfortunately, the number of gather samples required to
provide a high quality indirect illumination solution is so high that it becomes impossible to
shade them at interactive speed. Our algorithm addresses this issue by reducing the number
of gather samples thanks to a combination of two clustering algorithms as well as by mapping
all lighting computations to a GPU implementation.

2

By combining a deep framebuffer approach with clustered gather samples, our hardware-
accelerated implementation is capable of achieving real-time feedback for changes to the
indirect illumination by arbitrary modifications of the parameters of procedurally-shaded
lights for a scene of high complexity as shown in the front figure.

2 Related Work

We briefly review related work in several areas: precomputed radiance transfer (PRT)-style
approaches, relighting engines, and interactive global illumination.
Precomputed radiance transfer approaches support relighting from distant sources in the
form of environment maps by representing and rendering pre-computed shading in basis func-
tions such as spherical harmonics [SKS02,KSS02, SHHS03], and wavelets [NRH03,NRH04].
Recent work [AKDS04] eliminates the restriction of distant lighting by supporting local light-
ing but only for one object. Extending the approach to a whole complex scene might be
possible, but it does not follow trivially.
Interactive global illumination approaches cache and recompute shading when changes
are made to scenes [BWG03, DBMS02, TPWG02, WKB∗02]. Camera motion and object
motion are well supported in these systems. However, relighting requires significant shading
recomputation; therefore, artifacts due to slow shading updates are typically visible in these
systems until the change propagates.
Relighting engines, as described earlier, store deep framebuffer information to recompute
shading for dynamic scenes [GH00, SS89,BP96]. These techniques store geometry and ma-
terial information to permit fast recomputation of shading. However, due to the amount of
information storage required, these techniques are limited to direct illumination rendering
only (with some limited indirect illumination in [BP96] for a Whitted style ray tracer).

3 Algorithm

3.1 One-Bounce Monte Carlo Solution

The goal of our algorithm is to evaluate the lighting values Ci = Di + Ii for the set of view
points vi, visible in the current view, considering the direct illumination D coming from the
scene’s lights as well as the indirect contribution I due to one-bounce indirect effects.

In the case of point lights, the direct illumination can be computed by summing the
contribution of each light weighted by the surface response and the visibility function and
can be written as

Di = D(vi) =
Nl∑
l=1

VilLilρil (1)

3

where Nl is the number of lights, Vil is the visibility function, Lil the light intensity and ρil

the surface response evaluated for light l and surface point i. In our case, the values of L
and ρ are computed using shaders, thus allowing artistic freedom in the choice of responses.

The indirect illumination coming from one-bounce interactions can be written as:

Ii = I(vi) =
∫
Ω

D(gi)ρigi
dω⊥

where Ω is the hemisphere at vi and gi is the surface point visible from vi in direction ω.
This term can be evaluated using Monte Carlo integration, i.e. by accumulating the direct
illumination of a set of Ng points obtained by sampling the hemisphere of vi. When the
hemispherical directions are randomly generated using a probability distribution pdf , we get:

Ii = I(vi) ≈
1

Ng

Ng∑
j=1

D(gij)ρigij

pdfij

=
Ng∑
j=1

D(gij)wij (2)

Using this approach, an estimate of the indirect illumination for a visible point vi is equivalent
to a weighted average of direct illumination computed on a set of Ng gather points gij.

3.2 Simple Relighting Using a Monte Carlo Approach

The previous discussion leads to a conceptually simple relighting algorithm. A deep frame-
buffer for the main view can be used to store the position, normal and material information
of each view sample along with a list of gather samples with the same point properties and
associated weights. Once this data structure is populated, images can be relit by repeated
evaluations of the direct illumination equation.

However, the large numbers of gather samples necessary to achieve reasonable quality
make this approach impractical in terms of both storage and time complexity. For example,
consider a 512 x 512 image with 400 gather samples per pixel and purely diffuse materials.
In this case, the storage of position, normal and diffuse reflectance in 32-bit floating point
format requires 3.6 GB.

3.3 Data Reduction Using a Clustering Approach

We propose to solve this problem by reducing the number of samples required to reconstruct
indirect illumination. We do so by combining two optimizations based on clustering algo-
rithms. First, our algorithm clusters each set of gather samples gij in order to obtain a set
of smaller size g̃ij but of comparable quality. To further reduce computation and storage, we
will cluster the view samples themselves to choose the set of points ṽk where the indirect con-
tribution will be computed. The values of the indirect illumination for all view samples can

4

a) Unclustered b) Clustered gather c) Clustered gather
samples and view

Figure 2: Comparison of images rendered with and without clustering for data sets of the
same size.

then be reconstructed by averaging the clustered view samples using radial basis functions.
Using these optimizations, the indirect illumination can be written as

Ii = I(vi) ≈
Nvc∑
k=1

cikI(ṽk) ≈
Nvc∑
k=1

cik(
Ngc∑
j=1

D(g̃kj)wkj) (3)

where Nvc < Nv is the number of clustered view samples, cik are their weights and Ngc < Ng

is the number of clustered gather points. The image quality obtained using these clustering
algorithms is illustrated in Figure 3 where we compare three images generated respectively
using all samples, clustered gather samples, and clustered view and gather samples; the
storage and performance are kept roughly equivalent in all three cases.

3.3.1 Clustering Algorithm

The clustering problem of a set of samples can be stated as the task of finding k cluster centers
that minimize the sum of the distances of each sample to its closest cluster center. While it is
quite hard to find the global minimum of such a function, approximation algorithms perform
quite well. k-means clustering (used e.g. in [SHHS03]) is an iterative algorithm that finds a
strong local minimum by iterating the following two steps: assign each point to the nearest
cluster, then recompute all cluster centers.

While the k-means algorithm has good local behavior, its results depend on the initial
positions of the cluster centers. To improve global behavior, we optionally use a two-phase
approach, where we initialize the k-means algorithm with cluster centers derived from a
hierarchical iterative procedure that guarantees well-distributed starting positions. Our hi-
erarchical algorithm works by iteratively splitting the cluster with largest total distance into

5

a) pure k-means b) our method

Figure 3: Comparison of clustering algorithms. The number of clusters is 1000 in both
images.

two smaller clusters using the k-means procedure on the two partitions. We initialize this
hierarchical procedure by assigning all points to one cluster and keep splitting until the num-
ber of desired clusters is obtained. Note that since the splitting runs the k-means algorithm
for only two clusters, it is much faster than running the k-means algorithm on the whole
sample set, so the speed hit is small.

3.3.2 Applying the Clustering Algorithm

We apply our two-phase clustering algorithm to the view and gather samples with a six-
dimensional metric defined as the weighted sum of the L2 distances for positions and normals.
The weighting should roughly ensure that two samples with completely different normals are
about as distant as two samples across the scene. The normal and material properties of the
clustered gather and view samples are computed as the average of the sample values in each
cluster. The position of the clustered samples is defined by picking the location of the closest
point in the cluster to the center (in 3D), thus ensuring proper evaluation of the visibility
function.

Figure 3 shows the clustering generated by applying our procedure to a set of view samples.
The use of a 6D metric is particularly important when trying to capture surface details such
as bump and displacement maps or high-complexity geometry. Figure 3 shows a comparison
of random and hierarchical initialization; the latter one tends to move more clusters towards
the more difficult parts of the image, even though they might take fewer pixels.

In order to handle diffuse and glossy objects, our algorithm computes two separate sets of
view clusters whose size is determined by the ratio of diffuse vs specular energy visible through

6

the camera. This allows us to reconstruct these two componentsseparately; in particular,
similarly to [TPWG02], our system interpolates irradiance for the Lambertian contribution
and radiance for the glossy contribution and reconstructs object textures per pixel.

4 Implementation

While the clustering optimizations presented provide us with considerable data reduction,
the number of direct illumination evaluations required for high quality rendering remains
quite high. To cope with this challenge, our implementation maps all relighting computation
to the GPU, achieving significant speed-ups over an equivalent CPU algorithm.

As we have seen previously, the evaluation of the direct illumination of a light for one
sample involves computing the light and surface response and evaluating the visibility func-
tion. In our implementation, the surface and light response are encoded in shaders written
using the Cg high-level shading language [MGAK03], thus allowing us to easily change the
lighting model including non-physical ones. The front figure shows various light types we
have implemented including point and spot lights as well as lights that project textures; more
complex lighting models such as [Bar97] can easily be added. In order to evaluate the sur-
face response, parameters for view and clustered gather samples are packed in 16-bit floating
point textures. Our view samples contain position, normal, diffuse and specular material
parameters for a total of 26 bytes per sample. Our clustered gather images pack position,
normal and diffuse coefficient (premultiplied by the sample weight) in 18 bytes; their direct
illumination is accumulated using floating-point framebuffer blending and indexed during a
reconstruction pass where coordinates and weights, 6 bytes, are stored in link images.

Visibility evaluation is currently supported using six shadow buffers packed in a floating
point cube texture providing a good solution for point lights. Using shadow maps allow us to
access geometry only once for the whole scene, while looking up this results multiple times
during rendering. Multiple lights are supported by only updating the results of moving lights,
while maintaining the accumulated results of all other lights in a separate cache.

The performance of our GPU implementation is mostly affected by two factors, the total
amount of texture memory and the texture access patterns, since our computation kernels
are quite small compared to the amount of memory accessed at each iteration, an operation
that on GPU is typically slower than arithmetic operations [BFH∗04]. The first limitation
forces us to only support scenes whose caches can fit in texture memory, thus placing an
upper bound on the maximum number of samples used interactively. The dependence on
texture access pattern is a more interesting limitation that guided the design of our clustering
algorithms; in particular we have noted that incoherent texture accesses, such as shadow
map queries and dependent texture lookups used for links, can become the main source of
slowdown in our GPU implementation. One algorithm we have tested previously was the use
of links to directly gather illumination from a hierarchical gather cloud shared by all view
samples; while this algorithm might further reduce noise, its performance on the GPU was

7

an order of magnitude smaller than our current implementation, thus resulting in a lower
quality for the same framerate. Our previous experiments as well as our current results
suggest that incoherent dependent texture lookups should be minimized, thus restricting
the possible relighting data structures that can be employed. In our case, we use a two-pass
clustering and only allow link accesses, required to limit total memory use, to a small number
of samples. Shadow map lookups presented a similar problem, since gather sample positions
are very incoherent. We settled on a six-face cube map packing that appears to give better
performance than other alternatives we tested.

5 Results

We tested our relighting algorithm on three scenes shown in Figure 4 on a Pentium 4 3.4
GHz with 1 GB of RAM and a 256 MB GeForce 6800 GT NVidia graphics accelerator;
various statistics for each example are reported in Table 1. While Scene 1 contains only
diffuse objects, scenes 2 and 3 have a variety of materials including glossy objects and bump-
mapped surfaces showing that our algorithm can handle complex materials as well.

These examples were rendered at 400 by 400 image resolution using 120 clustered gather
samples for each view sample generated from 2000 directions randomly selected using Quasi
Monte Carlo sampling. The direct illumination is always computed at full resolution. Indirect
illumination reconstruction is handled by interpolating the 10 closest clustered view samples
whose total number is 40,000. These numbers were chosen to balance image quality, texture
memory usage and shading speed and were found satisfactory in our test cases for most light
positions. Cache sizes for these data sets are roughly 100 MB and took between 60 to 100
minutes to generate using not very optimized pre-processing code.

Our hardware-accelerated implementation is capable of reaching interactive performance
even for relatively complex environments, such as the one shown in Scene 3. Its scalability
with geometric complexity is only limited by the time needed to render shadow maps, which
depends on the polygon count and can become significant in some cases. However, level-of-
detail approaches could be used to reduce shadow rendering times, which we did not attempt.
All other computation is geometry-independent. The other major component that affects the
frame-rate for our algorithm is the direct shading evaluation on the gather samples.

The quality of indirect illumination generated by our system is often high for most lighting
positions. Noisy artifacts can be observed at times where strong secondary illumination is
created, for example with spotlights of very high intensity and very small cone width or
when a point light gets very close to an object. In these cases, the visible noise is caused
by the inability of our approach to capture small secondary sources, which is typical for
gathering approaches. Nonetheless, our approach remains very useful even in these cases
since its quality is high enough for lighting design allowing for most artistic decisions to be
made interactively.

8

Scene 1 Scene 2 Scene 3
Number of Triangles 1930 24716 107159
Framerate (Hz) 15 12 8
Total frametime (ms) 68 82 133
Shadows (ms) 11 (14%) 27 (33%) 76 (57%)
Direct shading (ms) 1 (2%) 1 (1%) 1 (1%)
Indirect shading (ms) 46 (66%) 46 (55%) 46 (34%)
Links resolution (ms) 8 (9%) 8 (8%) 8 (6%)

Table 1: Performance statistics for the scenes tested.

Direct + Indirect Direct Only Indirect Only Lights moved

S
ce

n
e

1
S
ce

n
e

2
S
ce

n
e

3

Figure 4: Final frames for three example scenes: all images are gamma corrected.

9

6 Conclusion

This paper presents a novel extension to deep framebuffer relighting engines capable of com-
puting one-bounce indirect illumination in procedurally-shaded, relatively high complexity
environments for a variety of material types and direct illumination models, including local
ones. In these conditions relighting becomes equivalent to a large number of direct illumi-
nation computations that can be sped up considerably using clustering algorithms for the
gather and view samples. Data structures generated by these algorithms make it possible for
our hardware-accelerate implementation to provide high-quality feedback suitable for lighting
design at interactive rates for scenes of high complexity.

In the future we would like to extend our algorithm to multiple bounces of indirect
illumination and to better support strong secondary sources. It might be possible to do so
by combining a real-time light tracing algorithm with gather lookups accelerated using our
approach. Another possible extension would be to try to investigate how to low-pass filter
the gather image signal in order to reduce noise. Each of these extensions would require the
use of linked data structures that were proven inefficient in our studies thus requiring us to
develop more efficient GPU data structure abstraction for handling illumination computation
and reconstruction.

References

[AKDS04] Annen T., Kautz J., Durand F., Seidel H.-P.: Spherical harmonic gra-
dients for mid-range illumination. In Rendering Techniques 2004 Eurographics
Symposium on Rendering (June 2004), pp. 331–336.

[Bar97] Barzel R.: Lighting controls for computer cinematography. Journal of Graph-
ics Tools 2, 1 (1997), 1–20.

[BFH∗04] Buck I., Foley T., Horn D., Sugerman J., Fatahalian K., Houston
M., Hanrahan P.: Brook for gpus: stream computing on graphics hardware.
ACM Transactions on Graphics 23, 3 (Aug. 2004), 777–786.

[BP96] Briére N., Poulin P.: Hierarchical view-dependent structures for interactive
scene manipulation. In Proceedings of SIGGRAPH 96 (Aug. 1996), pp. 83–90.

[BWG03] Bala K., Walter B., Greenberg D.: Combining edges and points for
interactive high-quality rendering. In SIGGRAPH ’03 (July 2003).

[DBMS02] Dmitriev K., Brabec S., Myszkowski K., Seidel H.-P.: Interactive
global illumination using selective photon tracing. In EGRW ’02 (2002), pp. 21–
34.

10

[GH00] Gershbein R., Hanrahan P. M.: A fast relighting engine for interactive
cinematic lighting design. In Proceedings of ACM SIGGRAPH 2000 (July 2000),
pp. 353–358.

[KSS02] Kautz J., Sloan P.-P., Snyder J.: Fast, arbitrary brdf shading for low-
frequency lighting using spherical harmonics. In EGRW ’02 (2002), pp. 291–296.

[MGAK03] Mark W. R., Glanville R. S., Akeley K., Kilgard M. J.: Cg: A system
for programming graphics hardware in a c-like language. ACM Transactions on
Graphics 22, 3 (July 2003), 896–907.

[NRH03] Ng R., Ramamoorthi R., Hanrahan P.: All-frequency shadows using non-
linear wavelet lighting approximation. ACM TOG 22, 3 (2003), 376–381.

[NRH04] Ng R., Ramamoorthi R., Hanrahan P.: Triple product wavelet integrals
for all-frequency relighting. ACM TOG 23, 3 (2004), 477–487.

[SHHS03] Sloan P.-P., Hall J., Hart J., Snyder J.: Clustered principal components
for precomputed radiance transfer. ACM Transactions on Graphics 22, 3 (July
2003), 382–391.

[SKS02] Sloan P.-P., Kautz J., Snyder J.: Precomputed radiance transfer for real-
time rendering in dynamic, low-frequency lighting environments. In SIGGRAPH
’02 (2002), pp. 527–536.

[SS89] Séquin C. H., Smyrl E. K.: Parameterized ray tracing. In Computer Graphics
(Proceedings of SIGGRAPH 89) (July 1989), pp. 307–314.

[ST90] Saito T., Takahashi T.: Comprehensible rendering of 3-d shapes. In Com-
puter Graphics (Proceedings of SIGGRAPH 90) (Aug. 1990), pp. 197–206.

[TL04] Tabellion E., Lamorlette A.: An approximate global illumination system
for computer generated films. ACM Transactions on Graphics 23, 3 (Aug. 2004),
469–476.

[TPWG02] Tole P., Pellacini F., Walter B., Greenberg D.: Interactive global
illumination. In SIGGRAPH ’02 (June 2002), pp. 537–546.

[WKB∗02] Wald I., Kollig T., Benthin C., Keller A., Slusallek P.: Interactive
Global Illumination using Fast Ray Tracing. In 13th Eurographics Workshop on
Rendering (2002), pp. 15–24.

11

	Introduction
	Related Work
	Algorithm
	One-Bounce Monte Carlo Solution
	Simple Relighting Using a Monte Carlo Approach
	Data Reduction Using a Clustering Approach
	Clustering Algorithm
	Applying the Clustering Algorithm

	Implementation
	Results
	Conclusion

